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Abstract. We consider the problem of determining analytically the effective diffusion 
constant Dm for diffusion in an inhomogeneous medium, described by the difhJsion 
equation a,P= a,[D(x)a,P] with a position-dependent diffusion coefficient D(x). As there 
is no translational invariance, two different natural definitions are possible: From the long- 
time behaviour of the variance, DeE=% = lim((Ax)’)/U. From the large-dkrance behaviour 
of the mean first passage time T(k10)  to reach exit points at ? x  starting from the origin, 
D,=o=lim,,,i/2T(fxlO). In general, %#D. We find an exact formula for D and 
examineanumberofinterestingspecialcases.IfD(x)tends tofinitelimitsD,asx-++m, 
then D is simply the OrilhmeJk mean (D+ + 0 - ) / 2 .  In the important case of a periodic 
D(x), we find that D is the harmonic mean of D(x) in a period. We also give an argument 
suggesting that D=% in this case. If D(x) is piecewise constant in an arbitrary fashion, 
with a finite number of discontinuities, and tends to D, and x++m, then D= 
(D++D.)/Z as before, but 9=(D+D.)’n+(l-Z/z)(D~z-D!z)’~D (the equality 
obtainingonlyifD, =D.).Thus%isthegeometricmeanofD, andD- plusa’correction’ 
term. We also illustrate the significant role of inhomogeneities in determining Den with the 
help of a simple example involving a discrete-time random walk on a chain. 

1. Introduction 

Diffusion in an inomogeneous medium is of interest in a variety of physical contexts. 
The corresponding diffusion equation obeyed by the probability density is, for an 
isotropic medium, 

a,P=V-[D(r)VP(r,  E)] (1.1) 
where D(r) is a positive definite function. Analytical solutions of (1.1) are possible in 
only a few special cases; in general, one has to resort to numerical solutions [I]. 

In a homogeneous medium (i.e. when D ( r ) = D ,  a constant), of course, the 
variance of the displacement scales as t .  Likewise, the mean time to escape from a 
region of linear dimension r scales as rz. The constant of proportionality in each case is 
essentially D (apart from a known numerical factor), so that the diffusion constant 
may be defined in either of two equivalent ways from the above-mentioned scaling 
relations. However, when D(r) is position-dependent the translational invariance of 
(1.1) is lost, and so is the enact scaling of the variance with E, or that of the mean 
escape time with ?. These quantities yield valuable information about the diffusion 
process. We would like to examine the conditions under which they scale asympfofic- 
ally as t and ?, respectively; and when they do, to find the actual constants of 
proportionality in each case. Each of these constants may quite justifiably be called 
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the effective diffusion constant De* associated with the diffusion process. Our investi- 
gation (of the asymptotic behaviour of the variance and the mean escape time) may 
then be paraphrased as the determination of De,,. 

In order to find De8analyficaNy in various cases, we assume the inhomogeneity to 
occur along a single direction and consider inhomogeneous diffusion in one dmen- 
sion. The diffusion (or forward Kolmogorov) equation for the probability density 
P ( x ,  t )  is 
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a,P = a, [D (x)a,  f] (1 .2)  
subject to an initial condition P ( x , O ) = d ( x - y )  where - - m < x , y < m ,  and D ( x )  is a 
deterministic but otherwise arbitrary positive definite function of x. (We do not 
address here the more complicated problem of a random position-dependent D(x) . )  
The Laplace transform of P with respect to f therefore satisfies 

a,[D(x)a,P(x, s)] -sP(x ,s )  = -d(x - y ) .  (1.3) 
This is a classic Sturm-Liouville problem [a]. In principle, therefore, we have 
complete information on the existence of the eigenvalues and eigenfunctions of the 
differential operator on the left, the formal expansion of the Green function P in 
terms of the eigenfunctions, etc. Our interest, however, is in obtaining an explicit 
expression for De,, in the case of a general function D ( x ) .  

Heuristically, the obvious candidate for the effective diffusion constant would 
appear to be the ‘average’ diffusion constant defined by 

(W)) = 1- D(x)p,,(x) dx 
-0  

but the density P ( x , t )  does not tend (as f + m )  to any non-trivial stationary 
distribution P&). To overcome this difficulty, consider first the steadystate diffusion 
of particles across a homogeneous finite line segment with a source and sink, 
respectively, at the end points x =  -a and x = Q, and let D be the diffusion constant of 
the particles. The steady-state current density is given by j=D(dp/dx)  where pis the 
local particle density. Integrating both sides, we find 2a j / [p (a )  - p ( - a ) ] = D .  Now 
consider the same physical situation when the diffusion coefficient is a function of 
position, D ( x ) .  The steady-state current density is now j=D(x)(dp/dx), whence 

It therefore seems plausible, by direct analogy with the previous case, to simply define 
the effective diffusion constant as 

While this expression certainly has the right physical dimensions, it is entirely 
phenomenological in nature, and its derivation does not anywhere refer to the 
microscopic dynamics of the underlying diffusion process. On the other hand, we are 
interested in precisely the latter aspect, as characterized by the probability density 

. P ( x ,  f)-or, in the absence of the exact knowledge of P, by the variance ((Ax)’) of the 
displacement and by the mean time T(kxl0)  to start from the origin and cross the 
point +x or the point -x  (where x>O)  for the first time. For the conventional 
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diffusion process on a line, the diffusion constant is a measure of the spread of the 
diffusion profile (a Gaussian) as quantified by ((Ax)’). In contrast, for a position- 
dependent D(x)  the distribution is no longer Gaussian even if the process remains 
diffusive (i.e. the variance increases asymptotically as t). However, ((Ax)’) continues 
in this case to be a measure of the spread of the diffusion profile, justifying its use in 
the definition of De* On the other hand, the definition of De= in terms of the mean 
first passage time T(+xlO) is equally justsable, and indeed more meaningful in 
certain respects, as it probes the distribution P itself and not just its first and second 
moments. It is also the basic definition of D& on scale-invariant structures such as 
fractals [3], and so there is good reason to accept this as the more generally applicable 
prescription for the effective diffusion constant. In order to distinguish between the 
two alternatives for D.= (they will in general he distinct), we shall henceforth denote 
them by different symbols 9 and D. Their precise definitions are, respectively 

9 = lim ((Ax)’)/2f (1.5) c ID 

and 

D= -- limxV2T(+xlO). (1.6) 

We reiterate that the constants 9 and D characterize rather different properties of the 
diffusion process, and that there is really no unique quantity that represents an 
‘effective diffusion constant’ in the problem under consideration. 9 and D are merely 
the most natural objects that qualify for this label, for the reasons described above. 
When ‘global’ inhomogeneities are present, it is clear that both D and 9 will depend 
on the details of the variation of D ( x )  (which we may call the ‘macroscopic geometry’ 
of the medium). We shall compare and contrast these quantities in various representa- 
tive cases. A number of interesting conclusions emerge. 

An outline of the rest of the paper and a summary of the results are as follows. In 
section 2 we obtain an expression for D for a general D ( x ) ,  with the help of the 
backward Kolmogorov equation corresponding to (1.2). We use this to deduce 
conditions under which the x-dependence of D ( x )  can lead to superdiffusive or 
subdiffusive behaviour. It is shown, too, that if D(x)  tends to different limiting values 
D, and D- as x+m and - cQ , respectively, then D is simply the arithmetic mean 
( D ,  + D - ) / 2 .  In section 3, we consider the important case of a periodic diffusion 
coefficientD(x),i.e. D(x)=D(x+L) .  Weshowinastraightforwardmannerthat Dis, 
in this instance, simply the harmonic mean of D ( x )  in a fundamental interval. The 
counterpart of this result for a discrete-time random walk on a chain with transition 
probabilities that depend in a periodic manner on the site index is already implicit in 
earlier work [4]: the effective diffusion constant obtained from the long-time behav- 
iour of the variance indeed turns out to be given by the harmonic mean. We indicate 
how this may be shown to be identical to the effective diffusion constant obtained 
from the mean first passage time. We have also given simple physical arguments to 
support the harmonic-mean expression. 

When D(x)  is neither constant everywhere nor a periodic function of n, there is no 
length-scale in the problem beyond which spatial homogeneity obtains. 91 and D are in 
general different in this truly inhomogeneous situation. It is therefore of interest to 
investigate a case in which both these quantities can be computed exactly, and 
compared with each other. For this purpose, and also to include in our treatment the 
possible effects of finite discontinuities in D ( x ) ,  we consider in section 4 a D ( x )  that is 
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piecewise constant with a finite but arbitrary number of points of discontinuity. Hence 
D ( x )  tends to well-defined, but possibly distinct, limiting values D, and x+ i? m . We 
show rigorously that (i) 9 and 89 are distinct in this case, (ii) each of them is equal to 
the corresponding value that obtains when D(x)  has a single discontinuity, e.g. 
D ( x )  =D+O(x) +D-e ( -x ) ,  and (iii) while D=(D+ +D-) /2  (in conformity with what 
has been said earlier), we have 

S Reuathi and V Balakrishnan 

9=(D,D-)’”+ (1 -2/n)(Dyz-  D!!*)‘. (1.7) 
Thus 9 is not simply the geometric mean of D, and D-. Moreover 9<D unless 
D + = D - .  

We conclude the paper with a simple illustration of the sensitive dependence of the 
effectire diffusion constant on inhomogeneities, in a discrete-time random walk. 

2. D from the mean first passage time 

Let F(x ,  t ly)  denote the probability that the diffusing particle, having started from 
y E I =  [ - x ,  x] at f = 0, continues to be in the interval I at time t without having crossed 
+x .  Then Fobeys the backward Kolmogorov equation [S, 61 corresponding to (1.2), 
namely 

&F= r3,[D(y)aYF]. (2.1) 
It follows from this that the mean first passage time T(+xly)  to reach either one of the 
exit points +x and -x ,  starting at y e l ,  is given by the solution of [7,8] 

a,[Dcv)a,T(+xlr)l= - 1 

T(+xl-x) = T(kxlx)  =o. 
with the boundary conditions 

Defining the functions 

$(U, U) = I“ dz/D(z) and ~ ( u ,  U )  =I” z dz/D(z) 

we find that the solution to (2.2) satisfying the boundary conditions (2.3) is 

T(+xtr)=[~(-x,y)V(-x,x) -$(-x,x)+(-x,y)I/$(-x,x). 
The effective diffusion constant is therefore, from Eq. (1.6), 

D = lim .xZ@(-x,x)/2[$(-x, O)+(-x,  x )  - $ ( - x ,  x ) ~ ( - x ,  O)]. 
x-- 

A number of special cases can be deduced from this general result. To begin with, 
we note that if the positive definite function D ( x )  tends to the same constant D as x 
tends to + m as well as - m , then D = D as one would expect. On the other hand, if 
D(x)  tends to different constants D, as x+ k - , it is easily shown from (2.6) that 0 is 
just the arithmetic mean 

D=(D+ + D-)/2. (2.7) 
If D(x)+O as / X I +  m , D vanishes, indicating that the process is subdifmiue: that is, 
the variance of Y does not increase as rapidly as ti asymptotically. For instance, if 
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D(x)-O(lxl-") (a>O) as Ixl-m, then ((Ax)3-r?'"+"). Similarly, if D(x)  becomes 
unbounded as IxI+ m , D diverges, indicating that the process is in fact superdiffusive. 
Thus if D(x)-O(lxla)(a>O) as IxI+m, then  A AX)^)-?''^-^). This conclusion holds 
good for a<2. The limiting case is a=2, for which ((Ax)') increases exponenriaiiy 
with t:  I fD(x ) -O(xZ)  as I x I - ) ~ ,  T(+xlO)-lnx. For a>2 the variance growseven 
more rapidly in time than exp(f); for instance, if D(x)-O(x') as IxI-+m then 
T(? m 10) is actuallyfinite, i.e. the mean time for the particle to reach exit points at 
_+m is finite. 

If D(x)  is symmetric in x, equation (2.6) simplifies considerably. Since +(-x, x) = 
0 in this case, equation (2.5) reduces to T(+xly)= -+(-x,y)= y(lyl,x), using the 
symmetry of D ( x ) .  As a result (2.6) simplies to 

3. D when D(r) is a periodic function 

It is interesting to see what the effective diffusion constant D becomes in the case of a 
periodic diffusion coefficient: D ( x )  =D(x+A) .  Thus D(x)  does not tend to a definite 
limit as 1x1 + m . To apply (2.6) in t h i s  case, let x = rA + 5 where r is a positive integer 
and O<E<A. Evaluating each of the four functions in (2.6) we find, using the 
periodicity property of D(x) ,  the following leading asymptotic behaviours for large r: 

@(-x, O ) = r @ ( O , A )  @(-x3.4=2r@(o,4 
(3.1) w ( - x ,  O ) = - W @ ( - A ,  0) +(-x,4=42+(0,  A)-A@(-E,  01. 

Therefore, passing to the l i t  r+ 00, equation (2.6) yields 

D=A/@(-A, 0) =A/@(O,  A)=A/ dx/D(x) . (3.2) K 1 
Hence when the diffusion coefficient D(x)  is a periodic function, the effective 
diffusion constant D is just the harmonic mean of D(x)  over a full period of D(x).  

A simple illustration is provided by 

D ( x )  = Do + Dj cos(2Jcx/A) (O<Di < 00) (3.3) 
for which we get 

D= (Di- D:)? (3.4) 
Similarly, for the sawtooth shape defined in the fundamental interval by 

D ~ + ~ ( D ~ - D ~ ) ( I  -.q (A/2<x==A) (3.5) 
(O sx 

Do + 2(D, - D&/A 

[ D(x)= 

D = (0, - Do)/ln(D~/Do). 
we find 

(3.6) 
We note that even isolated zeros of D(x) ,  if they occur on both sides of the starting 
point, x=O, suffice to cause D to vanish (as may be seen by letting Dj+Doin (3.4) or 
4 - 0  in (3.6)). Again, even if D ( x )  becomes unbounded at isolated points, the 
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process remains diffusive with a finite value of D. [Example: D(x)= 
(constant)/(Az-4xz)]. In making these statements, we assume that D ( x )  is such that 
the singular points of the diffusion equation are regular. 

If D ( x )  is periodic and also piecew5e constant, equation (3.2) leads to a very 
simple expression for D. Suppose the fundamental interval of D ( x )  comprises N 
segments of length li in which D ( x )  = Di,  i = 1, . . . , N .  Then 
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(Equation (3.2) may be regarded as a limiting case of the above, when N-+m and 
l j -+O.)  This result is corroborated by a known result for its discrete analogue [4]. 
Consider a random walk in discrete time n on a linear chain Q}, j e Z .  Let the 
probability of a jump from any site to either of its neighbours be a (O<aS 1/2), so 
that the stay probability (after each time step) at each site is (1 -2a). The diffusion 
constant K for the random walk is defined by 

K= lim(iz(n))ln "-. m 

where j ( n )  is the displacement inn steps. It is easily shown that K = k .  Now suppose 
the jump rates are site dependent in a periodic manner, such that each fundamental 
interval consists of n,  sites with jump rates a l ,  n2 sites with jump rates %, . . . nN sites 
with jump rates aN. It can then be shown that 

. L I  

(3.8) 
i=1 

where K,=Za,. (In fact, this result remains valid irrespective of the order in which the 
n,  + . . . + nN sites are arranged, as long as the entire sequence is repeated periodic- 
ally.) We can go further; we can show that the same expression for K is obtained both 
from the asymptotic beliaviour of the variance (iz(n)) for large n, and from that of the 
mean first passage time T(kj10) for large j ,  where j is the site label. In Appendix 1, we 
have indicated how this may be done in the simplest such instance: a linear chain with 
two alternating types of sites, with jump rates a ,  and az. respectively. The effective 
diffusion constant is then the harmonic mean of Kl=2al and Kz=2a,. More 
complicated periodicities may be handled similarly, by a suitable decimation tech- 
nique [9, lo]. Moreover, it can be shown that a smooth continuum limit of the random 
walk problem with periodic jump probabilities exists: starting from the recursion 
relations for the probability distribution for the random walk, one can rigorously 
establish [lo] the diffusion equation~(1.2) for the probability density in the limit of 
continuous space and time, with a diffusion coefficient satisfying D(x)  = D(x +A). As 
the two effective diffusion coefficients are equal for the discrete random walk, and as a 
smooth continuum limit of this process exists, we may conclude that D=9 in the case 
of a spatially period D ( x ) .  (In passing, we mention that an elaborate coarse-graining 
procedure has been developed in the literature [ l l ]  to handle this case, leading to the 
conclusion that 9 is simply the mean value 

This conclusion is not justified.) 
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We remark that a harmonic mean result like (3.2) or (3.7) is physically quite 
plausible. That the effective diffusion constant cannot possibly be any other kind of 
mean value can be seen on simple grounds. If any of the D,+O, then ID must vanish 
because long-range diffusion would be cut off. This rules out any kind of (weighted) 
arithmetic mean. Similarly, if any D.+ m , the diffusion is controlled by the rest of the 
set, and the process is still diffusive (ID remains finite). Thii rules out any  kind of 
geometric mean. The harmonic mean yields the expected answer in both these 
limiting cases as well. Again, we may anticipate this result by an analogy nith the rule 
for the addition of conductances placed in series. 

4. D for piecewise constant D ( x )  

Finally, let us consider a situation in which D(x)  is neither continuous nor periodic in 
x. For simplicity, we look at the case of a piecewise constant D(x) .  Thus D ( x )  takes 
on arbitrary positive values {D,} on segments of arbitrary lengths {lj} of the x-axis; 
moreover, we assume that there exist fmite points x -  and x+  such that D(x)  = D- for 
x<x_andD(x)=D+ forx<x,,sothatD(x)haswell-definedlimitsasx-++m. Our 
aim is to calculate the effective diffusion constants as defined by the variance and by 
the mean first passage time, respectively. As the case at hand is truly homogeneous, 
the two answers differ from each other, and we would like to compare them. 

It turns out (and we shall establish this subsequently) that the result in each of the 
two approaches is the same as the corresponding one in the case when D(x)  has a 
single discontinuity (which we may take to occur at x = 0)-in other words, for the 
case 

D ( X )  = o-e(-x)  + ~ + e ( x ) .  (4.1) 

Accordingly, we solve the problem for this form of D(x)  first. In order to appreciate 
the manner in which the dependence of the various quantities concerned on the initial 
position y disappears asymptotically, we consider an artibraq initial position: 
P ( x , O ) = d ( x - y ) .  Taking up the first passage time method first, the backward 
Kolmogorov equation can be integrated out as in section 2 to yield the following 
result: the mean first passage time to reach exit points at +x, where O S l y l S x ,  is 
found to be 

( - x  s y GO) 

( O G Y S X ) .  

(x  - y ) P D + x +  (D* + DJYl 
2D_(D, +D-) 

(4.2) 
(x+Y)[~D-x - (D, + D-)y] 

2D_(D,  +D-) 

(4.3) 

i T(fxly) = 

We note that Tis  continuous at y = 0 (as a function of y ) .  As x+ m , T(fx1y) clearly 
tends to x*/(D+ + D-), which is the same as T(fx l0 ) .  Hence 

r@=limx2/2T(+xly)=(D+ + D _ ) / 2  
X'" 

as we have already found in (2.7): D is just the arithmetic mean of the asymptotic 
values D, and E.  
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Now consider the forward Kolmogorov (or diffusion) equation a,f  = a,[D(x)a,f] 
for the conditional density P ( x ,  t ly) ,  with D ( x )  as given by (4.1). An explicit solution 
can be found for P(r, t ly) .  but we do not write it down here in the interests of brevity. 
However, it is instructive to look at the structure of the solution in the special case 
y = 0: we find 

P ( x ,  t [ O )  = (nt)-I"(D:'+ D!!z)-1[exp(-x'/4D+t)B(r) + exp(-xZ/4D_t)6'(-x)J (4.4) 
with O(O)=+. The profile is thus two 'half-Gaussians' patched together at x=O. The 
mode remains at x = 0 at all times, as does the median. However, since D ,  #D-, the 
mean value is non-zero even though there is no bias. It grows as t'", being given by 

(4.5) 

(4.6) 

l!2 DI/2- D"' Cr(r))=2(tln) ( + - ). 
The mean squared displacement is given by 

( ~ ' ( t ) )  = ZdD + + D - - (D + D -)"? = 2 [ ( D  + D -)'I' + (D :" - D !!')*I. 
For an arbitrary starting pointy (<O, say), we find 

(x ( t ) )  = y  + (D:"- D!!*)[yDIL" Erfc(-y/(4D_r)") + 2(f/n)'" exp(-y2/4D_t)] 

and 

( ~ ' ( t ) )  =y' + 2 0 ~ +  2DY2(D!// - D'" - )texp(-y2/4D_t) 

(4.7) 

As r+m (more precisely, as y2/D- t+0) ,  ( x ( f ) )  and (xz(t)) tend to the expressions 
given in (4.5) and (4.6), respectively. The variance of x therefore has the large-r 
behaviour (x*(c)) - (x ( t ) ) *+ZW,  where 

9 =(D+D-)"*+ (1 -2/~)(0:"- D!!')'. (4.9) 
Equation (4.9) shows explicitly how the effective diffusion constant, as defined by the 
behaviour of the variance, differs from the geometric mean (D+D_)"* that one might 
expect at first sight. Moreover, 9 is always less than the value D=(D+ + D - ) / 2  
obtained earlier from the mean first passage time. The ratio 9/D drops from unity (in 
the homogeneous case D + = D - )  to the minimum value (2-4/n))=0.727 in the 
extreme inhomogeneous limit when either D+ or D- tends to zero. We note, too, that 
if D- is zero, for instance, then the result 9 = (1 -2/n)D+ is precisely the value of the 
diffusion constant as defined by the variance for diffusion on the semi-infinite line 
O ~ x < m  in the presence of a reflecting boundary at x=O.  

It remains to show that the foregoing conclusions remain valid when D(x)  is 
piecewise constant in an arbitrary fashion, as long as D ( x )  = D- to the left of some 
finite value x - ,  and D ( x ) = D +  to the right of some finite value x,.  As far as D is 
concerned, the argument is straightforward because the general result of section 2 
(obtained by integrating the backward Kolmogorov equation) continues to hold good, 
as long as D ( x )  has only finite discontinuities. Hence D=(D+ + D - ) / 2 ,  as in (4.3). On 
the other hand, we need a more elaborate argument to find the leading behaviour of 
the variance of x in the general case. This is given in Appendix 2. We find that 9 
continues to be given by (4.9), corroborating our earlier statement. 

Finally, it is worth noting that, significant as the effects of a spatially varying D ( x )  
are upon the effective diffusion constant, the effects of such inhomogeneities can be 



Effectiue'diffusion constant for inhomogeneous diffusion 5669 

even more pronounced in the discrete counterpart of the diffusion process. We 
illustrate this with a simple example, involving a discrete-time random walk on a 
linear chain. Let the jump probability from any negative site - j  (where j =  1, 2, . . .) to 
either of its neighbours be p, and that from any positive site j ( j =  l , Z ,  . . .) to either of 
its neighbours be a. At the origin, suppose the jump probability from 0 to +1 is p ,  
while that from 0 to -1 is q. The mean first passage time T(Lj10) from 0 to exit points 
at - j  and + j  is then found to be 

(4.10) T(kjIO)= j [ l +  ( j -  l ) ( p / k + q / Z ~ ) ] / @  + 4). 
Hence the effective diffusion constant is 

K =  IiijW(kjl0) = (p + q)/[p(2a)-' + q(28)-']. (4.11) 

If all the transition probabilities had been a (respectively, p ) ,  the diffusion constant 
would have been K ,  = 2a (respectively, K -  = 2p). In the inhomogeneous situation at 
hand, however, K is given by a weighted average of K, and K_-namely 

j+m 

K-1 = ( p K ; ' + q K : y @  + 4). (4.12) 

We note how the effect of the extra inhomogeneity at the origin (the starting point of 
the walk) persists in K, i.e. in controlling the coefficient of the leading asymptotic 
behaviour of the walk. If p =q, K is simply the harmonic mean of K+ and K- .  On the 
other hand, ifp =a and q=p, K switches to the arithmetic mean of K ,  and K - .  Of 
course, if the inhomogeneity is localized in a finite region-in the present example, 
this means it is restricted to the single site j = 0 by setting a =p-then K reduces to the 
value Za independent of p and q, as expected. 
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AppendiK 1. DBusion constant for a random walk on a chain of period 2 

Consider a random walk in discrete time n on a linear chain with two alternating types 
of sites. The jump probability from a type-1 (say even) site 2 j  to the adjacent type-2 
site ( Z j -  1)  or (2j+ 1)  is a,, whie that from a type-2 site (2j+ 1) to site 2 j  or (2j+2) is 
a> Here Osal ,2s+.  Let T(f210) be the mean time to start from an arbitrary even site 
(which we may label as site 0) and reach the next site of the same type (i.e. site 22)  for 
the first time. Using the Markov-chain property of the random walk, as well as the fact 
that T(+21+1) = T ( ?  21 - 1) by an obvious symmetry property, we have 

T( *210) = 1 + (1 - 2a1) T(k210) + 2a1T( +21+ 1) 

T(f2)  +1) = 1 + (1 - 2a2)T(f2) +1) + azT(L210). (Al.l) 

Therefore the mean time to cover a distance of two lattice constants (on either side of 
the starting point) is 

(A1.2) T( f 2  IO) = (a, + a*) /ala,. 
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Similarly, we can show that the mean first passage time to cover a distance of 2j lattice 
constants to reach sites of the same type as the starting point on either side of it is 

~(+2j~O)=j2(a,+a2)/a,a2=j2T(+2~0). (A1.3) 

The scaling of T (as a function of j )  on this periodic structure is thus exact, and the 
effective diffusion constant defined via the mean first passage time is 

(A1.4) 
This is just the harmonic mean of the values Za, and Za, that would obtain on lattices 
with a single type of site and nearest-neighbour jump probabilities a,  and a2, 
respectively. 

Now let us consider the effective diffusion constant as defined by the behaviour of 
the variance of the displacement of the random walker. The random walk problem on 
the chain is solved quite easily. Let Pa(]' be the probability that the displacement of 
the walker in the n time steps is equal toj. Define the transform (with respect to j and' 
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K =  (zj)W(+2jlO) = 4a,az/(al + ad. 

4 

(A1.5) 

Then, averaging over both types of initial positions of the walker, we obtain the 
solution 

1+~[(a ,+a2)( l -cosk) - l ]  
(A1.6) R(k' *) = 1 + 2*(a, + az - 1 )  + E'(1- 2a1 - 2a2 + 4a,a, sin' k )  ' 

The mean displacement ( j ( n ) )  is evidently zero. The variance (j'(n)) is the inverse 
*-transform of 

Q'(E)) = - (aZR/ak3,. ,  (A1.7) 

We find the exact result 
1 a , -a2 2 

G'(n))= (-) a,+a,  n +- 2 (-) al+az  [ I -  ( 1  - 2a1 - 2QY1 (A1.8) 

valid for all n( =0, 1 ,  . . .). We note in passing that it is only asymptotically that the 
process is purely diffusive ( ( j ' ) /n =constant). The diffusion constant, defined as 

lim ( j2 (n ) ) /n  
n- - 

is therefore 4a,az/(a, + a'). This is exactly the same answer as that obtained in (A1.4) 
by the mean first passage time method. 

Appendix 2. Asymptotic behaviour of ((Ax)') for a piecewise constant D(x) 

We want to find the leading behaviour of the variance of x when D ( x )  is a piecewise- 
constant function of the form 
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withx,,-x- andx,=x+, Y being any finite positive integer. The initial position is some 
arbitrary point, y say, in the interval [xi-l, x,]. As the initial density P(x ,  0) = 6 ( x - y )  
is normalized to unity, and the diffusion equation a,P= a,[D(x)aJ’J is an equation of 
continuity, the density P ( x ,  I) is guaranteed to remain normalized for all f. With the 
notation a, = (s/D,)”’, ai= (s/Di)”’, the Laplace transform P(x, s) is given by the 
following solution: 

A- exp(a-x) (- m < x s x - )  

B,  exp(-a,x) (x+sx<m). 
P(x, s) = Ai exp(aix) + Bi exp(-a$) (Xi-1 s x  G X i )  (‘42.2) 

Aiexp(a~)  +Bi exp(-aix) x i - l s x s y  

i 
The coefficients A-, Ai, Bi and B ,  are functions of s and y. In the interval [xi-l, xi] the 
solution is given by 

P k S )  = [ A‘e / xp( a rr, )+B;exp(-a+) y s x s x i .  W . 3 )  

The coefficients {A} and { B }  are found by using the continuity of P and D(x)a,f‘ at the 
points x = x - ,  xlr . . . , x ~ - ~ ,  x,; the continuity of P at x = y ;  and the discontinuity of 
a,P at x = y ,  namely 

(A2.4) 

This last condition makes the set of equations for the coefficients {A} and {B} 
inhomogeneous. Moreover, since it yields the relation 

A;exp(aiy) + B; exp(-aiy) =Aiexp(aiy) + Biexp(-aiy) + (sDi)-’” (A2.5) 
it is not difficult to see that all the coefficients {A} and {B} have a leading small-s 
behaviour -s-’”. This observation is crucial in the argument that follows. 

a& + 0, s) - aJyY - 0, s) = - l/Dt 

Now consider the mean displacement (x ( I ) ) ,  whose transform is 

(A2.6) 

The leading asymptotic behaviour (-t”3 of ( n ( r ) )  arises from the leading (-s-”’) 
singular part of (f(s)). Inserting in (A2.6) the form of the solution for P given above, 
we find that the leading part of (f(s)) comes from the first and last of the integrals on 
the right-specifically, from the terms 

-(A-la?) exp(a_x_) + (B,/a:) exp(-a+x+) (‘42.7) 
obtained after integrating over x .  In arriving at this conclusion, we have used the fact 
that a term like 

(Ailaf)(exp(a4 - exp(aiXi-1)) 

( Bi/aT)(exp(-aixi) - exp(-a,xi_l)) (m.8) 

01 

has a leading behaviour that is only -s-’, and not - s - ~ ” ,  because the leading term of 
the exponential (unity) cancels out in the difference of exponentials. Denoting the 
coefficient of s-’IZ in A- by a-, and that of B ,  by b,, we have 

A _ = a _ s - l / Z + .  . . B ,  =b+s-’”+ . . . (‘42.9) 
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where the dots denote regular functions of s'" (we shall determine a-  and b, shortly). 
It then follows from (A2.7) that the leading asymptotic behaviour of (x(t)) is the 
inverse transform of (b+D,  - a-D-)s-;j2, nameIy, 
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(x(t))-2(tln)1/E)"2(biDI - a-D-).  (A2.10) 
A similar argument for the mean squared displacement shows that its leading ( - t )  

asymptotic behaviour arises from the leading ( - s - ~ )  singular part of (x2(s)), given by 
(A2.11) 

(All other contributions are O(s-"') or less singular.) Therefore the leading behav- 
iour of (x2(t ) )  is given by the inverse transform of 2(u_D3'2+ b+Dtn) s - ~ .  i.e. 

(A2.12) 
It remains to find a-  and b,. To do this, we note that a typical matching condition 

(M-la?) exp(a-x_) + (2B+la:) exp(-a+x+). 

(x2(t)) - 2r(a_D!' + b+Dy'). 

(at xi,  say) reads 

(D;l/2exp(aixi) -D;l"exp(-aix.)) (E) 
exp(a,xJ exp(-aixJ A; 

(A2.13) 

Retaining just the leading (or O(s-"')) singular part of {Ai} and {&}, by writing 
A i = a g 1 / 2 +  regular function of SI", Bi= b,s-Il2+ regular function of sin, we see that 
the coefficients {U,) and {b,} obey the following matching conditions: 

- exp(a, + lxi )  exp(-ai+ a) A,+I  
- (~,~~2exp(ai.+lxi) -D:i21 ew(-ai++i)) (Bi+J' 

and 

= .  , . =(" 
1 ) C+). 0 -(sD+)"~ (A2.14) 

This yields at once 

which is solved trivially to yield 
a-=b+=1/(D!!'+D:'2) (A2.16) 

Substituting these solutions in (A2.10) and (A2.12) we obtain, finally, the leading 
asymptotic behaviours 

(x(t))=Z(tln)'l"D:'2- Dl/2 - )  (A2.17) 
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(x’(t))=Zr[D. + D- - (D+D_)”’]. (A2.18) 
But these are precisely the expressions (cf (4.5) and (4.6)) cktained in the case of a 
single point of discontinuity in D(x) ,  i.e. in the case when all the xi (i= 0, . . . , v )  
collapse to a single point, which may be taken to be the origin-so that D ( x ) =  
D_O(-x) + D+O(x). This completes the proof of the assertion made in section 4 to this 
effect. 
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